TSUNAMI (Apa yang harus dilakukan)

Penyebab
Tsunami adalah gelombang besar yang diakibatkan oleh pergeseran bumi di dasar laut. Kata tsunami berasal dari bahasa Jepang yang berarti “gelombang pelabuhan” karena bencana ini hanya terjadi di wilayah pesisir.

Kapan Tsunami Terjadi
Tsunami bisa terjadi kapan saja, pada saat musim hujan ataupun musim kemarau baik siang maupun malam hari. Tanda peringatan akan terjadinya bencana tsunami bisa dilihat di bawah ini.

Dampak
  • Banjir dan gelombang pasang yang tinggi
  • Kerusakan pada sarana dan prasarana di sekitar kawasan pesisir
  • Pencemaran sumber-sumber air bersih
Tindakan Kesiapsiagaan
Mengenai gejala yang mungkin terjadi
  • Biasanya diawali gempa bumi yang sangat kuat, biasanya lebih dari 6 skala richter, berlokasi di bawah laut. Anda dapat merasakan gempa tersebut jika berada di yang dekat dengan pusat gempa. Namun tsunami bisa tetap terjadi meskipun Anda tidak merasakan goncangan
  • Bila Anda menyaksikan permukaan laut turun secara tiba-tiba, waspadalah karena itu tanda gelombang raksasa akan datang (merupakan tanda peringatan datangnya tsunami)
  • Hembusan angin berbau air laut yang keras
  • Tsunami adalah rangkaian gelombang. Bukan gelombang pertama yang besar dan mengancam, tetapi beberapa saat setelah gelombang pertama akan menyusul gelombang yang jauh lebih besar
  • Bila Anda melihat laut menjadi berwarna gelap atau mendengar suara gemuruh lebih keras dari biasanya, itu dapat berarti gelombang tsunami sedang mendekat
Saat mengetahui ada gejala akan terjadi tsunami, segera sampaikan pada semua orang, khususnya aparat pemerintah setempat sehingga mereka dapat memberikan tanda peringatan untuk mengungsi. Segera lakukan pengungsian, karena tsunami bisa terjadi dengan cepat hingga waktu untuk mengungsi sangat terbatas. Mengungsi ke daerah yang tinggi dan sejauh mungkin dari pantai, mengikuti tanda evakuasi, melalui jalur evakuasi ke tempat evakuasi. Ikuti perkembangan terjadinya bencana melalui media atau sumber yang bisa dipercaya.

Mengurangi Dampak Tsunami
  • Hindari bertempat tinggal di daerah tepi pantai yang landai kurang dari 10 meter dari permukaan laut. Berdasarkan penelitian, daerah ini merupakan daerah yang mengalami kerusakan terparah akibat bencana Tsunami, badai dan angin ribut
  • Disarankan untuk menanam tanaman yang mampu menahan gelombang seperti bakau, palem, ketapang, waru, beringin atau jenis lainnya
  • Ikuti tata guna lahan yang telah ditetapkan oleh pemerintah setempat
  • Buat bangunan bertingkat dengan ruang aman di bagian atas
  • Bagian dinding yang lebar usahakan tidak sejajar dengan garis pantai

Tindakan Saat Tsunami Berlangsung
Prinsip-prinsip sebagai cara untuk menyelamatkan diri
  • Bila sedang berada di pantai atau dekat laut dan merasakan bumi bergetar, segera berlari ke tempat yang tinggi dan jauh dari pantai. Naik ke lantai yang lebih tinggi, atap rumah atau memanjat pohon. Tidak perlu menunggu peringatan Tsunami
  • Tsunami dapat muncul melalui sungai dekat laut, jadi jangan berada di sekitarnya
  • Selamatkan diri anda, bukan barang anda
  • Jangan hiraukan kerusakan di sekitar, teruslah berlari
  • Jika terseret tsunami, carilah benda terapung yang dapat digunakan sebagai rakit
  • Saling tolong-menolong, ajaklah tetangga tinggal di rumah anda, bila rumah Anda selamat! Utamakan anak-anak, wanita hamil, orang jompo, dan orang cacat
  • Selamatkan diri melalui jalur evakuasi tsunami ke tempat evakuasi yang sudah disepakati bersama
  • Tetaplah bertahan di daerah ketinggian sampai ada pemberitahuan resmi dari pihak berwajib tentang keadaan aman
  • Jika anda berpegangan pada pohon saat gelombang tsunami berlangsung jangan membelakangi arah laut supaya terhindar dari benturan benda benda yang dibawa oleh gelombang. Anda dapat membalikan badan saat gelombang berbalik arah kembali ke laut
  • Tetap berpegangan kuat hingga gelombang benar-benar reda
Tindakan Setelah Tsunami Berlalu
  • Hindari instalasi listrik bertegangan tinggi dan laporkan jika menemukan kerusakan kepada PLN
  • Hindari memasuki wilayah kerusakan kecuali setelah dinyatakan aman
  • Jauhi reruntuhan bangunan
  • Laporkan diri ke lembaga pemerintah, lembaga adat atau lembaga keagamaan
  • Upayakan penampungan sendiri kalau memungkinkan. Ajaklah sesama warga untuk melakukan kegiatan yang positif. Misalnya mengubur jenazah, mengumpulkan benda-benda yang dapat digunakan kembali, sembahyang bersama, dan lain sebagainya. Tindakan ini akan dapat menolong kita untuk segera bangkit, dan membangun kembali kehidupan
  • Bila diperlukan, carilah bantuan dan bekerja sama dengan sesama serta lembaga pemerintah, adat, keagaamaan atau lembaga swadaya masyarakat
  • Ceritakan tentang bencana ini kepada keluarga, anak, dan teman Anda untuk memberikan pengetahuan yang jelas dan tepat. Ceritakan juga apa yang harus dilakukan bila ada tandatanda tsunami akan datang.

GUNUNG TAMBORA

              Gunung Tambora (atau Tomboro) adalah sebuah stratovolcano aktif yang terletak di pulau Sumbawa, Indonesia. Gunung ini terletak di dua kabupaten, yaitu Kabupaten Dompu (sebagian kaki sisi selatan sampai barat laut, dan Kabupaten Bima (bagian lereng sisi selatan hingga barat laut, dan kaki hingga puncak sisi timur hingga utara), Provinsi Nusa Tenggara Barat, tepatnya pada 8°15' LS dan 118° BT. Gunung ini terletak baik di sisi utara dan selatan kerak oseanik. Tambora terbentuk oleh zona subduksi di bawahnya. Hal ini meningkatkan ketinggian Tambora sampai 4.300 m yang membuat gunung ini pernah menjadi salah satu puncak tertinggi di Nusantara dan mengeringkan dapur magma besar di dalam gunung ini. Perlu waktu seabad untuk mengisi kembali dapur magma tersebut.
            Aktivitas vulkanik gunung berapi ini mencapai puncaknya pada bulan April tahun 1815 ketika meletus dalam skala tujuh pada Volcanic Explosivity Index. Letusan tersebut menjadi letusan tebesar sejak letusan danau Taupo pada tahun 181. Letusan gunung ini terdengar hingga pulau Sumatra (lebih dari 2.000 km). Abu vulkanik jatuh di Kalimantan, Sulawesi, Jawa dan Maluku. Letusan gunung ini menyebabkan kematian hingga tidak kurang dari 71.000 orang dengan 11.000—12.000 di antaranya terbunuh secara langsung akibat dari letusan tersebut. Bahkan beberapa peneliti memperkirakan sampai 92.000 orang terbunuh, tetapi angka ini diragukan karena berdasarkan atas perkiraan yang terlalu tinggi. Lebih dari itu, letusan gunung ini menyebabkan perubahan iklim dunia. Satu tahun berikutnya (1816) sering disebut sebagai Tahun tanpa musim panas karena perubahan drastis dari cuaca Amerika Utara dan Eropa karena debu yang dihasilkan dari letusan Tambora ini. Akibat perubahan iklim yang drastis ini banyak panen yang gagal dan kematian ternak di Belahan Utara yang menyebabkan terjadinya kelaparan terburuk pada abad ke-19. Selama penggalian arkeologi tahun 2004, tim arkeolog menemukan sisa kebudayaan yang terkubur oleh letusan tahun 1815 di kedalaman 3 meter pada endapan piroklastik. Artifak-artifak tersebut ditemukan pada posisi yang sama ketika terjadi letusan di tahun 1815. Karena ciri-ciri yang serupa inilah, temuan tersebut sering disebut sebagai Pompeii dari timur.

Geografi
             Gunung Tambora terletak di pulau Sumbawa yang merupakan bagian dari kepulauan Nusa Tenggara. Gunung ini adalah bagian dari busur Sunda, tali dari kepulauan vulkanik yang membentuk rantai selatan kepulauan Indonesia. Tambora membentuk semenanjungnya sendiri di pulau Sumbawa yang disebut semenanjung Sanggar. Di sisi utara semenanjung tersebut, terdapat laut Flores, dan di sebelah selatan terdapat teluk Saleh dengan panjang 86 km dan lebar 36 km. Pada mulut teluk Saleh, terdapat pulau kecil yang disebut Mojo.
             Selain seismologis dan vulkanologis yang mengamati aktivitas gunung tersebut, gunung Tambora adalah daerah untuk riset ilmiah arkeolog dan biologi. Gunung ini juga menarik turis untuk mendaki gunung dan aktivitas margasatwa. Dompu dan Bima adalah kota yang letaknya paling dekat dengan gunung ini. Di lereng gunung Tambora, terdapat beberapa desa. Di sebelah timur terdapat desa Sanggar. Di sebelah barat laut, terdapat desa Doro Peti dan desa Pesanggrahan. Di sebelah barat, terdapat desa Calabai.
             Terdapat dua jalur pendakian untuk mencapai kaldera gunung Tambora. Rute pertama dimulai dari desa Doro Mboha yang terletak di sisi tenggara gunung Tambora. Rute ini mengikuti jalan beraspal melalui perkebunan kacang mede sampai akhirnya mencapai ketinggian 1.150 m diatas permukaan laut. Rute ini berakhir di bagian selatan kaldera dengan ketinggian 1.950 m yang dapat dicapai oleh titik pertengahan jalur pendakian. Lokasi ini biasanya digunakan sebagai kemah untuk mengamati aktivitas vulkanik karena hanya memerlukan waktu satu jam untuk mencapai kaldera. Rute kedua dimulai dari desa Pancasila di sisi barat laut gunung Tambora. Jika menggunakan rute kedua, maka kaldera hanya dapat dicapai dengan berjalan kaki.
Pemandangan Gunung Tambora dari udara
Sejarah Pembentukan
            Tambora terbentang 340 km di sebelah utara sistem palung Jawa dan 180-190 km diatas zona subduksi. Gunung ini terletak baik di sisi utara dan selatan kerak oseanik. Gunung ini memiliki laju konvergensi sebesar 7.8 cm per tahun. Tambora diperkirakan telah berada di bumi sejak 57.000 BP (penanggalan radiokarbon standar). Ketika gunung ini meninggi akibat proses geologi di bawahnya, dapur magma yang besar ikut terbentuk dan sekaligus mengosongkan isi magma. Pulau Mojo pun ikut terbentuk sebagai bagian dari proses geologi ini di mana teluk Saleh pada awalnya merupakan cekungan samudera (sekitar 25.000 BP).
            Menurut penyelidikan geologi, kerucut vulkanik yang tinggi sudah terbentuk sebelum letusan tahun 1815 dengan karakteristik yang sama dengan bentuk stratovolcano. Diameter lubang tersebut mencapai 60 km. Lubang utama sering kali memancarkan lava yang mengalir turun secara teratur dengan deras ke lereng yang curam.
             Sejak letusan tahun 1815, pada bagian paling bawah terdapat endapan lava dan material piroklastik. Kira-kira 40% dari lapisan diwakili oleh 1-4 m aliran lava tipis. Scoria tipis diproduksi oleh fragmentasi aliran lava. Pada bagian atas, lava ditutup oleh scoria, tuff dan bebatuan piroklastik yang mengalir ke bawah. Pada gunung Tambora, terdapat 20 kawah. Beberapa kawah memiliki nama, misalnya Tahe (877 m), Molo (602 m), Kadiendinae, Kubah (1648 m) dan Doro Api Toi. Kawah tersebut juga memproduksi aliran lava basal.

Sejarah Letusan
            Dengan menggunakan teknik penanggalan radiokarbon, dinyatakan bahwa gunung Tambora telah meletus tiga kali sebelum letusan tahun 1815, tetapi besarnya letusan tidak diketahui. Perkiraan tanggal letusannya ialah tahun 3910 SM ± 200 tahun, 3050 SM dan 740 ± 150 tahun. Ketiga letusan tersebut memiliki karakteristik letusan yang sama. Masing-masing letusan memiliki letusan di lubang utama, tetapi terdapat pengecualian untuk letusan ketiga. Pada letusan ketiga, tidak terdapat aliran piroklastik.
            Pada tahun 1812, gunung Tambora menjadi lebih aktif, dengan puncak letusannya terjadi pada bulan April tahun 1815. Besar letusan ini masuk ke dalam skala tujuh Volcanic Explosivity Index (VEI), dengan jumlah semburan tefrit sebesar 1.6 × 1011 meter kubik. Karakteristik letusannya termasuk letusan di lubang utama, aliran piroklastik, korban jiwa, kerusakan tanah dan lahan, tsunami dan runtuhnya kaldera. Letusan ketiga ini memengaruhi iklim global dalam waktu yang lama. Aktivitas Tambora setelah letusan tersebut baru berhenti pada tanggal 15 Juli 1815. Aktivitas selanjutnya kemudian terjadi pada bulan Agustus tahun 1819 dengan adanya letusan-letusan kecil dengan api dan bunyi gemuruh disertai gempa susulan yang dianggap sebagai bagian dari letusan tahun 1815. Letusan ini masuk dalam skala kedua pada skala VEI. Sekitar tahun 1880 ± 30 tahun, Tambora kembali meletus, tetapi hanya di dalam kaldera. Letusan ini membuat aliran lava kecil dan ekstrusi kubah lava, yang kemudian membentuk kawah baru bernama Doro Api Toi di dalam kaldera.
           Gunung Tambora masih berstatus aktif. Kubah lava kecil dan aliran lava masih terjadi pada lantai kaldera pada abad ke-19 dan abad ke-20. Letusan terakhir terjadi pada tahun 1967, yang disertai dengan gempa dan terukur pada skala 0 VEI, yang berarti letusan terjadi tanpa disertai dengan ledakan. 

Letusan Tahun 1815
  • Kronologi
               Gunung Tambora mengalami ketidakaktifan selama beberapa abad sebelum tahun 1815, dikenal dengan nama gunung berapi "tidur", yang merupakan hasil dari pendinginan hydrous magma di dalam dapur magma yang tertutup. Didalam dapur magma dalam kedalaman sekitar 1,5-4,5 km, larutan padat dari cairan magma bertekanan tinggi terbentuk pada saat pendinginan dan kristalisasi magma. Tekanan di kamar makma sekitar 4-5 kbar muncul dan temperatur sebesar 700 °C-850 °C.
              Pada tahun 1812, kaldera gunung Tambora mulai bergemuruh dan menghasilkan awan hitam. Pada tanggal 5 April 1815, letusan terjadi, diikuti dengan suara guruh yang terdengar di Makassar, Sulawesi (380 km dari gunung Tambora), Batavia (kini Jakarta) di pulau Jawa (1.260 km dari gunung Tambora), dan Ternate di Maluku (1400 km dari gunung Tambora). Suara guruh ini terdengar sampai ke pulau Sumatera pada tanggal 10-11 April 1815 (lebih dari 2.600 km dari gunung Tambora) yang awalnya dianggap sebagai suara tembakan senapan. Pada pagi hari tanggal 6 April 1815, abu vulkanik mulai jatuh di Jawa Timur dengan suara guruh terdengar sampai tanggal 10 April 1815.
             Pada pukul 7:00 malam tanggal 10 April, letusan gunung ini semakin kuat. Tiga lajur api terpancar dan bergabung. Seluruh pegunungan berubah menjadi aliran besar api. Batuan apung dengan diameter 20 cm mulai menghujani pada pukul 8:00 malam, diikuti dengan abu pada pukul 9:00-10:00 malam. Aliran piroklastik panas mengalir turun menuju laut di seluruh sisi semenanjung, memusnahkan desa Tambora. Ledakan besar terdengar sampai sore tanggal 11 April. Abu menyebar sampai Jawa Barat dan Sulawesi Selatan. Bau "nitrat" tercium di Batavia dan hujan besar yang disertai dengan abu tefrit jatuh, akhirnya reda antara tangal 11 dan 17 April 1815.
               Letusan tersebut masuk dalam skala tujuh pada skala Volcanic Explosivity Index. Letusan ini empat kali lebih kuat daripada letusan gunung Krakatau tahun 1883. Diperkirakan 100 km³ piroklastik trakiandesit dikeluarkan, dengan perkiraan massa 1,4×1014 kg. Hal ini meninggalkan kaldera dengan ukuran 6-7 km dan kedalaman 600-700 m.[2] Massa jenis abu yang jatuh di Makassar sebesar 636 kg/m². Sebelum letusan, gunung Tambora memiliki ketinggian kira-kira 4.300 m, salah satu puncak tertinggi di Indonesia. Setelah letusan, tinggi gunung ini hanya setinggi 2.851 m.
              Letusan Tambora tahun 1815 adalah letusan terbesar dalam sejarah. Letusan gunung ini terdengar sejauh 2.600 km, dan abu jatuh setidaknya sejauh 1.300 km. Kegelapan terlihat sejauh 600 km dari puncak gunung selama lebih dari dua hari. Aliran piroklastik menyebar setidaknya 20 km dari puncak.

  • Akibat
                 Semua tumbuh-tumbuhan di pulau hancur. Pohon yang tumbang, bercampur dengan abu batu apung masuk ke laut dan membentuk rakit dengan jarak lintas melebihi 5 km . Rakit batu apung lainnya ditemukan di Samudra Hindia, di dekat Kolkata pada tanggal 1 dan 3 Oktober 1815. Awan dengan abu tebal masih menyelimuti puncak pada tanggal 23 April. Ledakan berhenti pada tanggal 15 Juli, walaupun emisi asab masih terlihat pada tanggal 23 Agustus. Api dan gempa susulan dilaporkan terjadi pada bulan Agustus tahun 1819, empat tahun setelah letusan.
               Tsunami besar menyerang pantai beberapa pulau di Indonesia pada tanggal 10 April, dengan ketinggian di atas 4 m di Sanggar pada pukul 10:00 malam. Tsunami setinggi 1-2 m dilaporkan terjadi di Besuki, Jawa Timur sebelum tengah malam dan tsunami setinggi 2 m terjadi di Maluku.
                 Tinggi asap letusan mencapai stratosfer, dengan ketinggian lebih dari 43 km. Partikel abu jatuh 1 sampai 2 minggu setelah letusan, tetapi terdapat partikel abu yang tetap berada di atmosfer bumi selama beberapa bulan sampai beberapa tahun pada ketinggian 10-30 km. Angin bujur menyebarkan partikel tersebut di sekeliling dunia, membuat terjadinya fenomena. Matahari terbenam yang berwarna dan senja terlihat di London, Inggris antara tanggal 28 Juni dan 2 Juli 1815 dan 3 September dan 7 Oktober 1815. Pancaran cahaya langit senja muncul berwarna orange atau merah di dekat ufuk langit dan ungu atau merah muda di atas.
            Jumlah perkiraan kematian bervariasi, tergantung dari sumber yang ada. Zollinger (1855) memperkirakan 10.000 orang meninggal karena aliran piroklastik. Di pulau Sumbawa, terdapat 38.000 kematian karena kelaparan, dan 10.000 lainnya karena penyakit dan kelaparan di pulau Lombok. Petroeschevsky (1949) memperkirakan sekitar 48.000 dan 44.000 orang terbunuh di Sumbawa dan Lombok.
           Beberapa pengarang menggunakan figur Petroeschevsky, seperti Stothers (1984), yang menyatakan jumlah kematian sebesar 88.000 jiwa. Tanguy (1998) mengklaim figur Petroeschevsky tidak dapat ditemukan dan berdasarkan referensi yang tidak dapat dilacak. Tanguy merevisi jumlah kematian berdasarkan dua sumber, sumber dari Zollinger, yang menghabiskan beberapa bulan di Sumbawa setelah letusan dan catatan Raffles. Tanguy menunjukan bahwa terdapat banyak korban di Bali dan Jawa Timur karena penyakit dan kelaparan. Diperkirakan 11.000 meninggal karena pengaruh gunung berapi langsung dan 49.000 oleh penyakit epidemi dan kelaparan setelah letusan. Oppenheimer (2003) menyatakan jumlah kematian lebih dari 71.000 jiwa seperti yang terlihat di tabel dibawah.
Pengaruh Global
            Letusan gunung Tambora tahun 1815 mengeluarkan sulfur ke stratosfer, menyebabkan penyimpangan iklim global. Metode berbeda telah memperkirakan banyaknya sulfur yang dikeluarkan selama letusan: metode petrologi, sebuah pengukuran berdasarkan pengamatan anatomi, dan metode konsentrasi sulfat inti es, menggunakan es dari Tanah Hijau dan Antartika. Perkiraan beragam tergantung dari metode, antara 10 Tg S hingga 120 Tg S.
        Pada musim semi dan musim panas tahun 1816, sebuah kabut kering terlihat di timur laut Amerika Serikat. Kabut tersebut memerahkan dan mengurangi cahaya matahari, seperti bintik pada matahari yang terlihat dengan mata telanjang. Baik angin atau hujan tidak dapat menghilangkan "kabut" tersebut. "Kabut" tersebut diidentifikasikan sebagai kabut aerosol sulfat stratosfer. Pada musim panas tahun 1816, negara di Belahan Utara menderita karena kondisi cuaca yang berubah, disebut sebagai Tahun tanpa musim panas. Temperatur normal dunia berkurang sekitar 0,4-0,7 °C, cukup untuk menyebabkan permasalahan pertanian di dunia. Pada tanggal 4 Juni 1816, cuaca penuh es dilaporkan di Connecticut, dan dan pada hari berikutnya, hampir seluruh New England digenggam oleh dingin. Pada tanggal 6 Juni 1816, salju turun di Albany, New York, dan Dennysville, Maine. Kondisi serupa muncul untuk setidaknya tiga bulan dan menyebabkan gagal panen di Amerika Utara. Kanada mengalami musim panas yang sangat dingin. Salju setebal 30 cm terhimpun didekat Kota Quebec dari tanggal 6 sampai 10 Juni 1816.
         1816 adalah tahun terdingin kedua di Belahan Bumi Utara sejak tahun 1400 Masehi, setelah letusan gunung Huaynaputina di Peru tahun 1600. Tahun 1810-an adalah dekade terdingin dalam rekor sebagai hasil dari letusan Tambora tahun 1815 dan lainnya menduga letusan terjadi antara tahun 1809 dan tahun 1810. Perubahan temperatur permukaan selama musim panas tahun 1816, 1817 dan tahun 1818 sebesar -0,51, -0,44 dan -0,29 °C, dan juga musim panas yang lebih dingin, bagian dari Eropa mengalami badai salju yang lebih deras.
           Perubahan iklim disalahkan sebagai penyebab wabah tifus di Eropa Tenggara dan Laut Tengah bagian timur di antara tahun 1816 dan tahun 1819. Banyak ternak meninggal di New England selama musim dingin tahun 1816-1817. Suhu udara yang dingin dan hujan besar menyebabkan gagal panen di Kepulauan Britania. Keluarga-keluarga di Wales mengungsi dan mengemis untuk makanan. Kelaparan merata di Irlandia utara dan barat daya karena gandum, haver dan kentang mengalami gagal panen. Krisis terjadi di Jerman, harga makanan naik dengan tajam. Akibat kenaikan harga yang tidak diketahui menyebabkan terjadinya demonstrasi di depan pasar dan toko roti yang diikuti dengan kerusuhan, pembakaran rumah dan perampokan yang terjadi di banyak kota-kota di Eropa. Ini adalah kelaparan terburuk yang terjadi pada abad ke-19.

Bukti Arkeologi
         Pada musim panas tahun 2004, tim dari Universitas Rhode Island, Universitas North Carolina di Wilmington, dan direktorat vulkanologi Indonesia, dipimpin oleh Haraldur Sigurdsson, memulai sebuah penggalian arkeologi di gunung Tambora. Setelah enam minggu, tim tersebut menggali bukti adanya kebudayaan yang hilang yang musnah karena letusan gunung Tambora. Situs tersebut terletak 25 km sebelah barat kaldera, di dalam hutam, 5 km dari pantai. Tim tersebut harus melewati endapan batu apung vulkanik dan abu dengan tebal 3 m.
          Tim tersebut menggunakan radar penembus tanah untuk mencari lokasi rumah kecil yang terkubur. Mereka menggali kembali rumah dan mereka menemukan sisa dua orang dewasa, dan juga mangkuk perunggu, peralatan besi dan artifak lainnya. Desain dan dekorasi artifak memiliki kesamaan dengan artifak dari Vietnam dan Kamboja. Uji coba dilakukan menggunakan teknik karbonisasi memperjelas bahwa mereka terbentuk dari pensil arang yang dibentuk oleh panas magma. Semua orang, rumah dan kebudayaan dibiarkan seperti saat mereka berada tahun 1815. Sigurdsson menyebut kebudayaan ini sebagai Pompeii dari timur. Berdasarkan artifak yang ditemukan, yang mayoritas benda perunggu, tim menyatakan bahwa orang-orang tersebut tidak miskin. Bukti sejarah menunjukan bahwa orang di pulau Sumbawa terkenal di Hindia Timur untuk madu, kuda, kayu sepang (caesalpinia sappan), memproduksi dye merah, dan cendana yang digunakan untuk dupa dan pengobatan. Daerah ini diketahui produktif dalam bidang pertanian.
          Penemuan arkeologi memperjelas bahwa terdapat kebudayaan yang hancur karena letusan tahun 1815. Sebutan Kerajaan Tambora yang hilang disebut oleh media. Dengan penemuan ini, Sigurdsson bermaksud untuk kembali ke Tambora tahun 2007 untuk mencari sisa desa, dan berharap dapat menemukan istana.

Ekosistem
       Tim penelitian yang dipimpin oleh ahli botani Swiss, Heinrich Zollinger, tiba di pulau Sumbawa tahun 1847. Misi Zollinger adalah untuk mempelajari letusan dan pengaruhnya terhadap ekosistem lokal. Ia adalah orang pertama yang memanjat ke puncak gunung Tambora setelah letusan gunung tersebut. Gunung tersebut masih tertutup oleh asap. Ketika Zollinger memanjat, kakinya tenggelam beberapa kali melalui kerak permukaan tipis menuju lapisan hangat yang seperti sulfur. Beberapa tumbuh-tumbuhan kembali tumbuh dan beberapa pohon diamati di lereng yang lebih rendah. Hutan Casuarina dicatat pada 2.200-2.550 m. Beberapa Imperata cylindrica juga dapat ditemukan.
        Penduduk mulai tinggal di gunung Tambora pada tahun 1907. Penanaman kopi dimulai pada tahun 1930-an di lereng bagian barat laut gunung Tambora, di desa Pekat. Hutan hujan yang disebut Duabangga moluccana telah tumbuh dengan ketinggian 1.000-2.800 m. Penanaman tersebut mencakupi daerah seluas 80.000 hektar (800 km²). Hutan hujan ditemukan oleh tim Belanda, dipimpin oleh Koster dan De Voogd tahun 1933. Mereka memulai perjalanan di "daerah hampir tandus, kering dan panas" dan mereka memasuki "hutam hebat" dengan "raksasa hutan yang besar dan megah". Pada ketinggian 1.100 m, mereka memasuki hutan montane. Pada ketinggian 1.800 m , mereka menemukan Dodonaea viscosa yang didominasi oleh pohon Casuarina. Di puncak, mereka menemukan sedikit Anaphalis viscida dan Wahlenbergia.
56 spesies burung ditemukan tahun 1896, termasuk Crested White-eye. 12 spesies lainnya ditemukan pada tahun 1981. Beberapa penelitian ahli ilmu hewan menemukan spesies burung lainnya di gunung, menghasilkan ditemukannya lebih dari 90 spesies burung. Kakatua-kecil Jambul-kuning, Murai Asia, Tiong Emas, Ayam hutan Hijau dan Perkici Pelangi diburu untuk dijual dan dipelihara oleh penduduk setempat. Gosong berkaki-jingga diburu untuk dimakan. Eksploitasi burung menyebabkan berkurangnya populasi burung. Yellow-crested Cockatoo hampir punah di pulau Sumbawa.
        Sejak tahun 1972, perusahaan penebangan komersial telah beroperasi di daerah ini, yang menyebabkan ancaman terhadap hutan hujan. Perusahaan penebangan memegang izin untuk menebang kayu di daerah seluas 20.000 hektar (200 km²), atau 25% dari jumlah luas daerah. Bagian hutan hujan lainnya digunakan untuk berburu. Di antara tanah berburu dan tanah penebangan, terdapat cagar alam, temat rusa, kerbau, babi hutan, kelelawar, rubah terbang, dan berbagai spesies reptil dan burung dapat ditemukan. 

Pengamatan
Populasi Indonesia meningkat dengan cepat sejak letusan tahun 1815. Pada tahun 2006, populasi Indonesia telah mencapai 222 juta jiwa, dan 130 juta penduduk berada di pulau Jawa dan Bali. Sebuah letusan gunung berapi sebesar letusan Tambora tahun 1815 akan menyebabkan kematian yang lebih besar, sehingga aktivitas vulkanik di Indonesia terus diamati, termasuk gunung Tambora.
Aktivitas seismologi di Indonesia diamati oleh Pusat Vulkanologi dan Mitigasi Bencana Geologi Indonesia. Pos pengamatan untuk gunung Tambora terletak di desa Doro Peti. Mereka memfokuskan aktivitas seismik dan tektonik dengan menggunakan seismometer. Sejak letusan tahun 1880, tidak terdapat peningkatan aktivitas seismik. Pengamatan terus dilakukan di dalam kaldera, terutama di kawah Doro Api Toi.
Pusat Vulkanologi dan Mitigasi Bencana Geologi telah menegaskan peta mitigasi bahaya gunung Tambora. Dua zona yang dinyatakan adalah zona bahaya dan zona waspada. Zona bahaya adalah daerah yang secara langsung terpengaruh oleh letusan: aliran piroklastik, aliran lava dan jatuhnya piroklastik lainnya. Daerah ini, termasuk kaldera dan sekelilingnya, meliputi daerah seluas 58,7 km². Orang dilarang tinggal di zona berbahaya. Zona waspada termasuk daerah yang mungkin dapat secara langsung terpengaruh oleh letusan: aliran lahar dan batuan apung lainnya. Luas dari daerah waspada sebesar 185 km², termasuk desa Pasanggrahan, Doro Peti, Rao, Labuan Kenanga, Gubu Ponda, Kawindana Toi dan Hoddo. Sungai yang disebut sungai Guwu yang terletak di bagian selatan dan barat laut gunung Tambora juga dimasukan kedalam zona waspada.

Foto-foto Gunung Tambora








 
Sumber:

LETUSAN GUNUNG API BAWAH LAUT (FOTO)






KONSEP RUMAH TAHAN GEMPA

Teknologi rumah tahan gempa cepat bangun


Teknologi yang biasa dikembangkan oleh berbagai pihak sebagai solusi rumah cepat bangun, biasa dibuat dari konstruksi sederhana dengan jenis bahan struktur konstruksi ringan dan penutup atap dan dinding yang ringan pula. Struktur penyangga rumah sederhana cepat bangun bisa dibuat dari rangka besi, kayu, maupun bambu. Pada prinsipnya rancangan tersebut dapat mempertahankan kekakuan struktur serta memiliki fleksibilitas untuk bergerak bersama gempa, serta mempertahankan penutup atap dan dinding pada tempatnya dengan sedikit kerusakan.
Dibawah ini terdapat leaflet pedoman praktis pembangunan rumah kayu tahan gempa yang dibuat oleh Departemen Pekerjaan Umum.


Teknologi bangunan konvensional bangunan batu-bata dengan struktur beton bertulang
Konsep hunian tahan gempa adalah bangunan yang dapat bertahan dari keruntuhan akibat getaran gempa, serta memiliki fleksibilitas untuk meredam getaran. Prinsipnya pada dasarnya ada dua: kekakuan struktur dan fleksibilitas peredaman. 

  • Prinsip Kekakuan struktur rumah menjadikan struktur lebih solid terhadap goncangan. Terbukti, bahwa struktur kaku seperti beton bertulang bila dibuat dengan baik dapat meredam getaran gempa dengan baik. Hal ini berarti memperhatikan sungguh-sungguh struktur yang dibuat pada saat pembangunan agar dapat lebih kuat dan lebih kaku. Kekakuan struktur dapat menghindarkan kemungkinan bangunan runtuh saat gempa terjadi. Kolom-kolom dan balok pengikat harus kuat dan ditopang oleh pondasi yang baik pula. 
  • Prinsip Fleksibilitas: Adanya kemungkinan struktur bangunan dapat bergerak dalam skala kecil, misalnya dengan menggunakan prinsip hubungan roll pada tumpuan-tumpuan beban. Yang dimaksud hubungan tumpuan roll adalah jenis hubungan pembebanan yang dapat bergerak dalam skala kecil untuk meredam getaran. Ini adalah salah satu contoh saja.
  • Prinsip penggunaan bahan material yang ringan dan ‘kenyal’: yaitu menggunakan bahan-bahan material ringan yang tidak lebih membahayakan bila runtuh, dan lebih ringan sehingga tidak sangat membebani struktur yang ada. Contohnya struktur kayu yang dapat menerima perpindahan hubungan antar kayu dalam skala gempa sedang.
  • Prinsip massa yang terpisah-pisah: yaitu memecah bangunan dalam beberapa bagian struktur yang lebih kecil, sehingga struktur ini tidak terlalu besar, terlalu panjang karena bila terkena gempa harus meredam getaran lebih besar.
Sistem pondasi yang ada saat ini yaitu pondasi tradisional dengan bahan batu kali harus diperhatikan dengan baik; antara lain diusahakan memiliki kemampuan meredam getaran dengan memberikan celah untuk bergerak pada hubungan antara pondasi dengan sloof, pondasi dengan kolom. Cara ini juga bisa didukung dengan memberikan bahan seperti pecahan kaca diantara pondasi dan sloof. Untuk dinding, sebenarnya dinding rumah2 tradisional banyak yang sudah sesuai untuk menghadapi gempa, antara lain dinding dari bahan bambu maupun tanaman lainnya. Dinding semacam ini dapat menerima getaran gempa dengan sangat baik. Bahkan rumah-rumah joglo kuno dapat bertahan dengan baik saat gempa. Untuk kondisi dewasa ini, bahan seperti lembaran komposit (misalnya dinding Hebel), gypsum dan bahan ringan lainnya dapat dengan baik bertahan saat gempa karena ringan dan kuatnya. Selain itu kondisi bahan lembaran solid ini dapat digabungkan dengan fleksibilitas penyambungan dengan kolom-kolom untuk meredam getaran.
Jika memakai batu bata, usahakan agar terdapat penguatan lebih banyak dengan menggunakan kolom kolom praktis sebagai pengaku. Jangan pernah meletakkan beban atap langsung pada dinding bata. Dinding bata juga perlu untuk diberi angkur pada kolom setiap jarak susunan 8 bata. Dinding bata yang diberi angkur dapat bertahan lebih baik saat gempa karena ditahan oleh kolom dan tidak ambruk.
Jenis atap yang ringan menggunakan kayu dapat dimaksimalkan ketika menghadapi gempa dengan membuat angkur pada ring balok, dimana angkur ini diberi celah untuk bergerak dengan sistem hubungan roll. Jenis atap yang cukup baik adalah atap yang ringan, menggunakan penutup atap ringan seperti lembaran komposit, namun bahan ini kurang diminati karena secara tampilan kurang bagus dibandingkan penutup atap genteng.
Beton harus diperkuat agar tidak mudah ambruk, secara keseluruhan, kolom dan balok beton menyangga keseluruhan bangunan, karenanya bila struktur ini tidak kuat menahan gempa, maka keseluruhan bangunan juga tidak kuat. Usahakan untuk membagi bangunan dalam beberapa kelompok struktur, misalnya menggunakan prinsip dilatasi (pemisahan struktur) antara satu massa dengan massa bangunan lain. Contohnya; memisahkan area ruang keluarga dengan area kamar-kamar secara struktural (meskipun secara organisasi ruang tetap menyatu).
Bangunan dengan bahan tripleks kurang disarankan, karena mudahnya terbakar. Bahan ringan lain yang dapat disarankan sebagai pengganti adalah gypsum atau dinding komposit. Untuk kawasan ibukota, bahan bahan tersebut secara estetis dapat diterima lebih baik. Bangunan yang atapnya dari alang2 atau jerami dapat diterima bila memang konsep bangunannya tradisional, atau memang dari awalnya tradisional, serta gaya hidup penghuninya sesuai untuk rumah tinggal tradisional (misalnya karena perawatan yang lebih banyak dibandingkan bahan atap modern). Bangunan seperti ini, digabungkan dengan cara-cara membangun tradisional seperti menggunakan kolom bambu, malah sangat baik bertahan dalam kondisi gempa. Rancangan interior sebaiknya disesuaikan bila kita concern terhadap masalah gempa ini. Pilihlah jenis furniture yang ringan dan tidak menghalangi saat dibutuhkan evakuasi gempa.
Pada dasarnya bahan-bahan bangunan yang ada saat ini dapat ditingkatkan lagi mutunya dalam menghadapi gempa, serta diperlukan inovasi dalam pengadaan material baru yang dapat menunjang keamanan saat gempa, seperti konstruksi yang ringan, fleksibel dan kuat. Yang paling penting diperhatikan melihat tren saat ini adalah; membuat bangunan dengan cara membangun yang lebih baik, seperti memperkuat dinding dengan angkur, kolom-kolom praktis, dan sebagainya. Ongkos membangun rumah tahan gempa secara relatif tidak banyak berbeda dengan rumah yang ada saat ini, hanya kualitas sambungan, joint antar pembebanan, jenis material yang mendukung (ringan, kuat dan fleksibel) dapat diperbanyak dan diaplikasikan dalam bangunan. Malahan saat ini terdapat material-material baru fabrikasi yang secara struktural telah teruji melalui laboratorium dan memiliki kualitas lebih baik daripada material konvensional.
Pada dasarnya yang perlu dilakukan adalah meningkatkan kualitas rancangan dan bangunan terhadap gempa melalui cara-cara membangun dan jenis material. Uang yang dikeluarkan tentunya untuk membeli material-material tersebut.
(klik gambar untuk memperbesar)


Sumber: 

GEMPA BUMI (Apa yang harus dilakukan)

Penyebab

Gempa bumi terjadi karena gesekan antar lempeng-lempeng tektonik di bawah permukaan bumi. Pergesekan ini mengeluarkan energi yang luar biasa besar dan menimbulkan goncangan di permukaan. Indonesia sangat rawan gempa karena secara geografis berada dekat dengan lempenglempeng yang aktif dan saling berhubungan satu sama lain, serta karena adanya gunung-gunung berapi yang aktif.

Dampak

Gempa bumi dapat menyebabkan kerusakan sarana seperti bangunan, jembatan dan jalan-jalan yang besar dan luas. Gempa juga dapat diikuti bencana alam berbahaya seperti tanah longsor dan tsunami (silakan baca bagian tanah longsor dan tsunami pada buku ini). Korban jiwa biasanya terjadi karena tertimpa bagian-bagian bangunan roboh atau obyek berat lain seperti pohon dan tiang listrik. Orang sering terperangkap dalam bangunan runtuh.

Gempa bumi sering diikuti oleh gempa susulan dalam beberapa menit, jam, hari atau bahkan minggu setelah gempa yang pertama, walaupun sering tidak sekuat yang pertama. Ancaman gempa susulan adalah runtuhnya bangunan yang telah goyah dan rusak akibat gempa pertama.

Tindakan Kesiapsiagaan

Merencanakan kesiapsiagaan terhadap bencana tidak hanya mencakup perencanaan fisik bangunan belaka. Setiap orang dalam rumah sebaiknya tahu apa yang harus dilakukan dan ke mana harus pergi bila situasi darurat terjadi.
  1. Prinsip rencana siaga untuk rumah tangga
    Sederhana - Rencana darurat rumah tangga dibuat sederhana sehingga mudah diingat oleh seluruh anggota keluarga. Bencana adalah situasi  yang sangat mencekam sehingga mudah mencetus kebingungan. Rencana darurat yang baik hanya berisi beberapa rincian saja yang mudah dilaksanakan.
    Tentukan jalan melarikan diri - Pastikan Anda dan keluarga tahu jalan yang paling aman untuk keluar dari rumah saat gempa. Jika Anda berencana meninggalkan daerah atau desa, rencanakan beberapa jalan dengan memperhitungkan kemungkinan beberapa jalan yang putus atau tertutup akibat gempa.
    Tentukan tempat bertemu - Dalam keadaan anggota keluarga terpencar, misalnya ibu di rumah, ayah di tempat kerja, sementara anak-anak di sekolah saat gempa terjadi, tentukan tempat bertemu. Yang pertama semestinya lokasi yang aman dan dekat rumah. Tempat ini biasanya menjadi tempat anggota keluarga bertemu pada keadaan darurat. Tempat kedua dapat berupa bangunan atau taman di luar desa, digunakan dalam keadaan anggota keluarga tidak bisa kembali ke rumah. Setiap orang mestinya tahu tempat tersebut.
  2. Prinsip rencana siaga untuk sekolah
  3. Sama dengan prinsip rencana siaga di rumah tangga. 
  4. Gedung sekolah perlu diperiksa ketahanannya 
  5. terhadap gempa bumi. Sebaiknya sekolah 
  6. dibangun berdasarkan standar bangunan tahan 
  7. gempa. Anak-anak sekolah perlu sering dilatih 
  8. untuk melakukan tindakan penyelamatan 
  9. diri bila terjadi gempa, misalnya sekurangkurangnya 2 kali dalam setahun.
Menyiapkan rumah tahan gempa

  • Minta bantuan ahli bangunan. Tanyakan tentang perbaikan dan penguatan rumah seperti serambi, pintu kaca geser, garasi, dan pintu garasi. Setidaknya ada bagian rumah yang tahan gempa sebagai titik atau ruang berlindung
  • Periksa apakah fondasi rumah Anda kokoh
  • Jika mempunyai saluran air panas dan gas, pastikan tertanam dengan kuat. Gunakan sambungan pipa yang lentur.
  • Letakkan barang yang besar dan berat dibagian bawah rak. Pastikan rak tertempel mati pada tembok.
  • Simpan barang pecah-belah di bagian bawah rak atau lemari yang berlaci dan dapat dikunci.
  • Gantungkan benda berat seperti gambar, lukisan, dan cermin jauh dari tempat tidur, sofa atau kursi dimana orang duduk
  • Segera perbaiki kabel-kabel yang rusak dan sambungan gas yang bocor
  • Perbaiki keretakan-keretakan pada atap dan fondasi rumah, dan pastikan hal itu bukan karena kerusakan struktur.
  • Pasang pipa air dan gas yang lentur untuk menghindari kebocoran air dan gas
  • Simpan racun serangga atau bahan yang berbahaya dan mudah terbakar di tempat aman, terkunci serta jauh dari jangkauan anak-anak
  • Hiasan gantung dan lampu diikat kuat agar tidak jatuh pada saat gempa.
  • Bila memungkinkan sediakan kasur gulung di dekat tempat-tempat tertentu sebagai alat pengaman kejatuhan barang dari atas
  • Menyediakan helm dekat dengan tempat kerja atau tempak tidur Anda dan gunakan segera ketika terjadi gempa
Tindakan saat terjadi gempa bumi
  1. Bila Anda berada dalam bangunan, cari tempat perlindungan, misalnya di bawah meja yang kuat. Hindari jendela dan bagian rumah yang terbuat dari kaca. Gunakan bangku, meja atau perlengkapan rumah tangga yang kuat sebagai perlindungan 
  2. Tetap di sana namun bersiap untuk pindah. Tunggu sampai goncangan berhenti dan aman untuk bergerak
  3. Menjauhlah dari jendela kaca, perapian, kompor atau peralatan rumah tangga yang mungkin akan jatuh. Tetap di dalam untuk menghindari terkena pecahan kaca atau bagian-bagian bangunan
  4. Jika malam hari dan Anda di tempat tidur, jangan lari keluar. Cari tempat yang aman di bawah tempat tidur atau meja yang kuat dan tunggu gempa berhenti. Jika gempa sudah berhenti, periksa anggota keluarga dan carilah tempat yang aman. Ada baiknya kita mempunyai lampu senter dekat tempat tidur. Saat gempa malam hari, alat murah ini sangat berguna untuk menerangi jalan mencari tempat aman, terutama bila listrik padam akibat gempa. Lilin dan lampu gas sangat berbahaya, dan sebaiknya tidak digunakan
  5. Jika Anda berada di tengah keramaian, cari perlindungan. Tetap tenang dan mintalah yang lain untuk tenang juga. Jika sudah aman, berpindahlah ke tempat yang terbuka, jauh dari pepohonan besar atau bangunan. Waspada akan kemungkinan gempa susulan
  6. Jika Anda di luar, cari tempat terbuka, jauh dari bangunan, pohon tinggi dan jaringan listrik. Hindari rekahan akibat gempa yang bisa sangat berbahaya
  7. Jika Anda mengemudi, berhentilah jika aman, tapi tetap dalam mobil. Menjauhlah dari jembatan, jembatan layang atau terowongan. Pindahkan mobil jauh dari lalu lintas. Jangan berhenti dekat pohon tinggi, lampu lalu lintas atau tiang listrik
  8. Jika Anda di pegunungan, dekat dengan lereng atau jurang yang rapuh, waspadalah dengan batu atau tanah longsor yang runtuh akibat gempa
  9. Jika Anda di pantai, segeralah berpindah ke daerah yang tinggi atau berjarak beberapa ratus meter dari pantai. Gempa bumi dapat menyebabkan tsunami selang beberapa menit atau jam setelah gempa dan menyebabkan kerusakan yang hebat
Tindakan setelah gempa bumi berlangsung
  1. Periksa adanya luka. Setelah menolong diri, bantu menolong mereka yang terluka atau terjebak. Hubungi petugas yang menangani bencana, kemudian berikan pertolongan pertama jika memungkinkan. Jangan coba memindahkan mereka yang luka serius karena justru bisa memperparah luka.
  2. Periksa keamanan. Periksa hal-hal berikut setelah gempa
    Api atau ancaman kebakaran
    Kebocoran gas - tutup saluran gas jika diduga bocor dari adanya bau dan jangan dibuka sebelum diperbaiki oleh ahlinya
    Kerusakan saluran listrik - matikan meteran listrik
    Kerusakan kabel listrik - menjauhlah dari kabel listrik sekalipun meteran telah dimatikan
    Barang-barang yang jatuh di dalam lemari (saat Anda membukanya)
    Periksa pesawat telepon - pastikan telepon pada tempatnya
  3. Lindungi diri Anda dari ancaman tidak langsung dengan memakai celana panjang, baju lengan panjang, sepatu yang kuat, dan jika mungkin juga sarung tangan. Ini akan melindungi Anda dari luka akibat barang-barang yang pecah.
  4. Bantu tetangga yang memerlukan bantuan. Orang tua, anak-anak, ibu hamil, ibu menyusui dan orang cacat mungkin perlu bantuan tambahan. Mereka yang jumlah anggota keluarganya besar juga memerlukan bantuan tambahan pada keadaan darurat
  5. Pembersihan. Singkirkan barang-barang yang mungkin berbahaya, termasuk pecahan gelas, kaca, dan obat-obatan yang tumpah.
  6. Waspada dengan gempa susulan. Sebagian besar gempa susulan lebih lemah dari gempa utama. Namun, beberapa dapat cukup kuat untuk merobohkan bangunan yang sudah goyah akibat gempa pertama. Tetaplah berada jauh dari bangunan. Kembali ke rumah hanya bila pihak berwenang sudah mengumumkan keadaan aman.
  7. Gunakan lampu senter. Jangan gunakan korek api, lilin, kompor gas atau obor
  8. Gunakan telepon rumah hanya dalam keadaan darurat yang mengancam jiwa
  9. Nyalakan radio untuk informasi, laporan kerusakan atau keperluan relawan di daerah Anda
  10. Kondisikan jalan bebas rintangan untuk mobil darurat

VULKANISME

           Istilah vulkanisme berasal dari kata latin vulkanismus nama dari sebuah pulau yang legendaris di Yunani. Tidak ada yang lebih menakjubkan diatas muka bumi ini dibandingkan dengan gejala vulkanisme dan produknya, yang pemunculannya kerapkali menimbulkan kesan-kesan religiuos. Letusannya yang dahsyat dengan semburan bara dan debu yang menjulang tinggi, atau keluar dan mengalirnya bahan pijar dari lubang dipermukaan, kemudian bentuk kerucutnya yang sangat mempesona, tidak mengherankan apabila dimasa lampau dan mungkin juga sekarang masih ada sekelompok masyarakat yang memuja atau mengkeramatkannya seperti halnya di pegunungan Tengger (Gn.berapi Bromo) di Jawa Timur.
          Vulkanisme dapat didefinisikan sebagai tempat atau lubang diatas muka Bumi dimana daripadanya dikeluarkan bahan atau bebatuan yang pijar atau gas yang berasal dari bagian dalam bumi ke permukaan, yang kemudian produknya akan disusun dan membentuk sebuah kerucut atau gunung (gambar 1).
Gambar 1 Kerucut gunung api yang disusun oleh perselingan  piroklastik dan aliran lava

             Adapun sejumlah bahan-bahan yang dikeluarkan melalui lubang, yang kemudian dikenal sebagai pipa kepundan, terdiri dari pecahan-pecahan batuan yang tua yang telah ada sebelumnya yang membentuk tubuh gunung-berapi, maupun bebatuan yang baru samasekali yang bersumber dari magma di bagian yang dalam dari litosfir yang selanjutnya disemburkan oleh gas yang terbebas. Magma tersebut akan dapat keluar mencapai permukaan bumi apabila geraknya cukup cepat melalui rekahan atau patahan dalam litosfir sehingga tidak ada waktu baginya untuk mendingin dan membeku.

Gambar 2 Proses terjadinya vulkanisme melalui lempeng
yang menghasilkan magma dan kemudian naik ke permukaan
bumi melalui rekahan, patahan, atau bukaan

           Terdapat dua sifat dari magma yang dapat memberikan potensi untuk bertindak demikian, dan itu adalah pertama kadar gas yang ada didalam magma dan yang kedua adalah kekentalannya. Sebab sebab terjadinya vulkanisme adalah diawali dengan proses pembentukan magma dalam litosfir akibat peleburan dari batuan yang sudah ada, kemudian magma naik kepermukaan melalui rekahan, patahan dan bukaan lainnya dalam litosfir menuju dan mencapai permukaan bumi (gambar 2).

            Wilayah-wilayah sepanjang batas lempeng dimana dua lempeng litosfir saling berinteraksi akan merupakan tempat yang berpotensi untuk terjadinya gejala vulkanisma. Gejala vulkanisma juga dapat terjadi ditempat-tempat dimana astenosfir melalui pola rekahan dalam litosfir naik dengan cepat dan mencapai permukaan. Tempat-tempat seperti itu dapat diamati pada batas lempeng litosfir yang saling memisah-diri seperti pada punggung tengah samudra, atau pada litosfir yang membentuk lantai samudra.

               Tidak semua gunung-berapi yang sekarang ada dimuka Bumi ini, memperlihatkan kegiatannya dengan cara mengeluarkan bahan-bahan dari dalam Bumi. Untuk itu gunungapi dikelompokan menjadi gunung berapi aktip, hampir berhenti dan gunung-berapi yang telah mati. Gunung-berapi yang digolongkan kedalam yang hampir mati, adalah gunung-gunung-berapi yang tidak memperlihatkan kegiatannya saat ini, tetapi diduga bahwa gunungapi itu kemungkinan besar masih akan aktip dimasa mendatang. Biasanya gunung-berapi ini memperlihatkan indikasi-indikasi kearah bangunnya kembali, seperti adanya sumber panas dekat permukaan yang menyebabkan timbulnya sumber dan uap air panas, dll. Gunung-berapi yang telah mati atau punah adalah gunung-berapi yang telah lama sekali tidak menunjukkan kegiatan dan juga tidak memperlihatkan tanda-tanda kearah itu.


Erupsi Gunung Api

           Gunung berapi disamping merupakan gejala geologi yang berupa keluarnya bahan-bahan yang bersumber dari magma, baik itu yang berwujud sebagai gas, lelehan maupun benda padat berupa fragmen-fragmen batuan ke permukaan Bumi, dinamakan erupsi atau erupsi gunung-berapi. Erupsi dapat dikelompokan berdasarkan :

  • Jenis bahan yang dikeluarkan melalui lubang kepundan, atau lokasi dari tempat keluarnya bahan-bahan dari magma. Berdasarkan jenis bahan yang dikeluarkan, kita mengenal sebutan erupsi efusip apabila bahan yang dikeluarkan hampir seluruhnya terdiri dari lelehan magma yang disebut lava. Sedangkan sebutan erupsi piroklastik, apabila bahan yang dikeluarkan sebagian besar terdiri dari fragmen-fragmen batuan, abu dan gas.
  • Erupsi juga dapat dikelompokan berdasarkan lokasi atau letak serta bentuk dari tempat keluarnya bahan-bahan magma dari dalam Bumi. Keluarnya bahan-bahan tersebut dapat melalui suatu lubang dipermukaan Bumi yang dihubungkan dengan pipa kedalam magma, atau suatu rekahan yang mencapai tempat berhimpunnya 
Untuk ini dikenali adanya 2 (dua) tipe erupsi, yaitu:
  • Erupsi sentral, apabila tempat keluarnya bahan-bahan itu berupa lubang yang yang dihubungkan dengan pipa, atau kepundan, dan berada di bagian tengah dari tubuh gunung-berapi;
  • Erupsi rekahan, apabila bahan-bahan berasal dari magma dikeluarkan melalui rekahan dalam kerak bumi yang bentuknya memanjang.
             Rekahan seperti itu terjadi sebagai akibat dari gejala regangan pada kerak yang sedang memisah diri. Bahan yang dikeluarkan melalui erupsi seperti ini umumnya berupa lelehan pijar dari magma atau lava. Meskipun pada umumnya bentuk erupsi sentral yang terdapat pada gunung-berapi terutama didarat berbentuk lubang yang dihubungkan dengan pipa, namun tidak tertutup kemungkinan juga dapat berupa rekahan. Umumnya lokasi erupsi berlangsung pada bagian tengah puncak gunung-berapi, tetapi kadang-kadang juga terjadi pada bagian lereng. Dan apabila ini yang terjadi, maka gejala tersebut dinamakan “flank” atau “lateral eruption”.

              Adapula erupsi gunung-berapi terjadi pada pada bagian kaki gunung-berapi, maka erupsi seperti itu dinamakan erupsi eksentrik atau erupsi parasitik. Erupsi yang berlangsung pada bagian puncak dinamakan juga erupsi terminal, sedangkan yang terjadi pada bagian lereng disebut sub-terminal. Keduanya selalu dianggap sebagai erupsi puncak, dimana yang sub-terminal merupakan pemisahan saja dari erupsi terminal. Erupsi puncak tidak akan menyebabkan penurunan terhadap kedudukan dari dapur magma, sedangkan erupsi eksentrik justru akan menyebabkan peningkatan kegiatan gas dibagian puncaknya.

Tipe-tipe Erupsi Gunung Api

Erupsi Sentral
Erupsi Rekahan

  1. Erupsi efusip. Erupsi efusip berjalan tenang, tidak disertai letusan-letusan yang dahsyat dan melibatkan 
  2. lava yang bersifat basaltis. Umumnya tidak menghasilkan piroklastik dalam jumlah 
  3. besar.
  4. Erupsi Sentral. Melalui satu lubang utama yang terletak ditengah, lava basaltis akan mengalir kesegala arah dalam jumlah yang hampir sama. Erupsi-erupsi yang terjadi berulang kali kemudian akan membangun sebuah gunungapi yang berbentuk perisai. Gunung-berapi yang terjadi dengan cara seperti ini disebut gunung-berapi perisai. Gunung-berapi ini mempuyai lereng yang sangat landai karena lava basaltis yang encer yang mampu mengalir dalam jarak yang jauh dari sumbernya, sehingga tidak mampu membangun kerucut yang tinggi. Contoh klasik gunungapi tipe ini dan yang paling banyak dipelajari adalah gunung-berapi yang membentuk Pulau Hawaii yang terletak di Samudra Pasifik. Pulau Hawaii sendiri terdiri dari 5 buah gunung-berapi perisai, dimana yang terbesar adalah Mauna Kea dan Mauna Loa dengan ketinggian puncaknya masing-masing 4205 dan 4170 meter. Dasarnya terletak pada dasar samudra yang dalamnya 5000 meter, sehingga dengan demikian apabila diukur dari kakinya, maka ketinggiannya mencapai ± 9000 meter. Dan ini adalah lebih tinggi dari gunung tertinggi di darat yaitu Mt.Everest di Pegunungan Himalaya. Mauna Loa dengan ketinggian seperti itu merupakan tumpukan lava dari berulang kali erupsi sejak 750.000 tahun yang lalu.
  5. Erupsi Rekahan. Tipe erupsi ini banyak dijumpai di wilayah lantai samudra. Rekahan terjadi sebagai akibat dari proses pemisahan pada litosfir, atau interaksi divergen lempeng litosfir, dengan ukuran panjang hingga beberapa puluh kilometer. Contoh klasik erupsi rekahan seperti ini dijumpai di Iceland yang terletak tepat diatas punggung-tengah-Samudra Atlantik. Lava yang keluar dari rekahan seperti ini bersifat sangat encer, akan menyebar ke-kedua arah dari rekahan dengan laju kecepatan hampir 20 kiliometer/jam. Urut-urutan keluarnya lava akan membentuk suatu dataran yang kadang tinggi dan disebut dataran basalt (plateau basalt) , atau “flood basalt”. Sepanjang sejarah geologi barangkali erupsi rekahan yang berlangsung secara berulang-ulang dan menghasilkan aliran basalt dalam jumlah yang sangat banyak mungkin hanya terjadi ditempat-tempat tertentu di muka Bumi. Sebagai contoh adalah “Dataran Deccan” yang terdapat di bagian Baratlaut Jazirah India. Kemudian di wilayah dataran Columbia di Negara.  Bagian Washington dan Oregon hingga ke Idaho. Dalam ukuran yang agak kecil dataran basalt juga dijumpai di selatan Vietnam, diutara Columbia Inggris dan Patagonia. Demikian pula dalam ukuran yang lebih kecil dan berumur lebih muda adalah di Afrika Selatan, Siberia Tengah, Abyssinia, beberapa tempat di amerika Utara dan Selatan. Di Amerika Keweenawan Basalt, mengandung endapan tembaga dalam jumlah besar. Erupsi rekahan yang pernah tercatat dalam sejarah sekarang adalah yang terjadi di wilayah Iceland, yang terletak tepat diatas punggung-tengah Samudra Atlantik. Erupsi terjadi pada tanggal 8 Juni 1783 melalui rekahan sepanjang 32 kilometer.
  6. Erupsi dibawah permukaan laut.  Erupsi efusip yang terjadi 300-1000 meter dibawah permukaan laut atau disebut juga “submarine” , umumnya berlangsung tenang. Lava yang dikeluarkan akan membeku dan membentuk lava bantal. Tipe erupsi ini sedikit sekali mendapat perhatian karena terjadinya jauh dibawah pengamatan. Lava yang membeku membentuk akan membentuk lava “bantal” (pillow lava). Bentuknya melonjong dengan ukuran kurang dari 1.5 meter dan penampang ± 30 Cm, dengan dasar yang mendatar dan bagian atasnya membulat.
  7. Erupsi piroklastik atau erupsi eksplosip.  Erupsi piroklastik terjadi pada magma yang kental, mengandung banyak gas dan mempunyai sifat letusan berkisar antara sedang dan sangat dahsyat. Erupsi explosip umumnya banyak menghasilkan piroklastika dan sedikit lava. Karena sifat magmanya yang kental maka lava yang mengalir tidak akan dapat menempuh jarak yang jauh dari sumbernya, lubang kepundan.

PENGINDERAAN JAUH

1. Pendahuluan
          Teknologi penginderaan jauh (remote sensing) berkembang dengan pesat sejak eksplorasi antariksa berlangsung sekitar tahun 1960-an dengan mengorbitnya satelit-satelit Gemini, Apollo, Sputnik, Solyus. Kamera yang mengambil gambar permukaan bumi dari satelit memberikan informasi berbagai gejala dipermukaan bumi seperti geologi, kehutanan, kelautan dan sebagainya. Teknologi pemotretan udara yang berkembang bersamaan dengan era eksplorasi antariksa seperti sistim kamera majemuk, multispectral scanner, vidicon, radiometer, spectrometer diikut sertakan dalam misi antariksa tersebut pada tahap berikutnya. Pada tahun 1972 satelit ERTS-1 (sekarang dikenal dengan Landsat) untuk pertama kali diorbitkan Amerika Serikat. Satelit ini dikenal dengan satelit sumber alam karena fungsinya adalah untuk memetakan potensi sumber alam dan memantau kondisi lingkungan.
          Para praktisi dari berbagai bidang ilmu mencoba memanfaatkan data Landsat untuk menunjang program pemetaan, dalam waktu singkat disimpulkan bahwa data satelit tersebut potensial untuk menunjang program pemetaan dalam lingkup sangat luas. Sejak itu berbagai satelit sejenis diorbitkan oleh negara-negara maju lain, seperti SPOT oleh Perancis, IRS oleh India, MOSS dan Adeos oleh Jepang, ERS-1 oleh MEE (Masyarakat Ekonomi Eropa) dan Radarsat oleh Kanada. Pada sekitar tahun 2000 sensor berketelitian tinggi yang semula merupakan jenis sensor untuk matamata/intellegence telah pula dipakai untuk keperluan sipil dan diorbitkan melalui satelit-satelit Quickbird, Ikonos, Orbimage-3, sehingga obyek kecil di permukaan bumi dapat pula direkam.
          Penggunaan data satelit penginderaan jauh di bidang kebumian telah banyak dilakukan di negara maju untuk keperluan pemetaan geologi, eksplorasi mineral dan energi, bencana alam dan sebagainya. Di Indonesia penggunaan dalam bidang kebumian belum sebanyak di luar negeri karena berbagai kendala, diantaranya data satelit cukup mahal, memerlukan software khusus dan paling utama adalah ketersediaan sumberdaya manusia yang terampil sangat terbatas. Dalam pembahasan ini akan lebih ditekankan pada pengenalan informasi geologi dan kondisi lingkungan geologi yang dalam beberapa hal berkaitan dengan penggunaan data satelit penginderaan jauh.

2. Prinsip Dasar
          Penginderaan jauh didefinisikan sebagai suatu metoda untuk mengenal dan menentukan obyek dipermukaan bumi tanpa melalui kontak langsung dengan obyek tersebut. Banyak pakar memberi batasan, penginderaan jauh hanya mencakup pemanfaatan gelombang elektromaknetik saja, sedangkan penginderaan yang memanfaatkan sifat fisik bumi seperti kemaknitan, gaya berat dan seismik tidak termasuk dalam klasifikasi ini. Namun sebagian pakar memasukkan pengukuran sifat fisik bumi ke dalam lingkup penginderaan jauh. Di bawah ini akan disinggung secara singkat mengenai gelombang elektromaknit, pembagian dalam selang panjang gelombang (spectral range), mengapa dipakai dalam sistim perekaman citra dan bagaimana responnya terhadap benda di permukaan bumi.

3. Komponen Dasar
Gambar 1 Komponen dasar sistem penginderaan jauh
(Sumber energi - Target - Alur Transmisi - Sensor)
          Empat komponen dasar dari sistem Penginderaan Jauh adalah target, sumber energi, alur transmisi, dan sensor. Komponen dalam sistem ini berkerja bersama untuk mengukur dan mencatat informasi mengenai target tanpa menyentuh obyek tersebut. Sumber energi yang menyinari atau memancarkan energi elektromagnetik pada target mutlak diperlukan. Energi berinteraksi dengan target dan sekaligus berfungsi sebagai media untuk meneruskan informasi dari target kepada sensor. Sensor adalah sebuah alat yang mengumpulkan dan mencatat radiasi elektromagnetik. Setelah dicatat, data akan dikirimkan ke stasiun penerima dan diproses menjadi format yang siap pakai, diantaranya berupa citra. Citra ini kemudian diinterpretasi untuk menyarikan informasi mengenai target. Proses interpretasi biasanya berupa gabungan antara visual dan automatic dengan bantuan computer dan perangkat lunak pengolah citra.

4. Teknologi Penginderaan Jauh
          Sebuah platform Penginderaan Jauh dirancang sesuai dengan beberapa tujuan khusus. Tipe sensor
dan kemampuannya, platform, penerima data, pengiriman dan pemrosesan harus dipilih dan
dirancang sesuai dengan tujuan tersebut dan beberapa faktor lain seperti biaya, waktu dan
sebagainya.
  • Resolusi Sensor
Rancangan dan penempatan sebuah sensor terutama ditentukan oleh karakteristik khusus dari
obyek yang ingin dipelajari dan informasi yang diinginkan dari obyek tersebut. Setiap aplikasi
Penginderaan Jauh mempunyai kebutuhan khusus mengenai luas cakupan area, frekuensi
pengukuran dam tipe energi yang akan dideteksi. Oleh karena itu, sebuah sensor harus mampu
memberikan resolusi spasial, spectral dan temporal yang sesuai dengan kebutuhan aplikasi.
  1. Resolusi spasial, menunjukkan tingkat kerincian/ketelitian suatu obyek yang ditangkap oleh sensor. Semakin rinci suatu obyek maka akan semakin tinggi pula resolusi spasial yang diperlukan. Sebagai contoh, pemetaan penggunaan lahan memerlukan resolusi spasial lebih tinggi daripada sistem pengamatan cuaca berskala besar.
  2. Resolusi spektral menunjukkan lebar kisaran dari masing-masing band spektral yang diukur oleh sensor. Untuk mendeteksi kerusakan tanaman dibutuhkan sensor dengan kisaran band yang sempit pada bagian merah.
  3. Resolusi temporal menunjukkan interval waktu antar dua pengukuran yang berurutan. Untuk memonitor perkembangan kebakaran hutan maka diperlukan pengukuran setiap jam, sedangkan untuk memonitor produksi tanaman membutuhkan pengukuran setiap musim, sedangkan pemetaan geologi hanya membutuhkan sekali pengukuran.
  • Platform
  1. Ground-Based Platforms: sensor diletakkan di atas permukaan bumi dan tidak 
  2. berpindah-pindah. Sensornya biasanya sudah baku seperti pengukur suhu, angin, pH air,
  3. intensitas gempa dll. Biasanya sensor ini diletakkan di atas bangunan tinggi seperti menara.
  4. Aerial platforms: biasanya diletakkan pada pesawat terbang, meskipun platform airbornelain seperti balon udara, helikopter dan roket juga bisa digunakan. Digunakan untukmengumpulkan citra yang sangat detail dari permukaan bumi dan hanya ditargetkan kelokasi tertentu. Dimulai sejak awal 1900-an.
  5. Satellite Platforms: sejak awal 1960 an sensor mulai diletakkan pada satelit yang diposisikan pada orbit bumi dan teknologinya berkembang pesat sampai sekarang. Banyak studi yang dulunya tidak mungkin menjadi mungkin.
  • Radiasi Elektromagnetik
          Energi elektromagnetik merambat dalam gelombang dengan beberapa karakter yang bisa diukur,
yaitu: panjang gelombang/wavelength, frekuensi, amplitudo, kecepatan. Amplitudo adalah tinggi gelombang, sedangkan panjang gelombang adalah jarak antara dua puncak. Frekuensi adalah jumlah gelombang yang melalui suatu titik dalam satu satuan waktu. Frekuensi tergantung dari kecepatan merambatnya gelombang. Karena kecepatan energi elektromagnetik adalah konstan (kecepatan cahaya), panjang gelombang dan frekuensi berbanding terbalik. Semakin panjang suatu gelombang, semakin rendah frekuensinya, dan semakin pendek suatu gelombang semakin tinggi frekuensinya. Energi elektromagnetik dipancarkan, atau dilepaskan, oleh semua masa di alam semesta pada level yang berbedabeda. Semakin tinggi level energi dalam suatu sumber energi, semakin rendah panjang gelombang dari energi yang dihasilkan, dan semakin tinggi frekuensinya. Perbedaan karakteristik energi gelombang digunakan untuk mengelompokkan energi
elektromagnetik.
  • Gelombang Elektromagnetik
           Gelombang elektromaknit adalah gelombang yang merambat secara kontinu dalam gerak yang harmonis. Sumber dari gelombang ini secara alami adalah sinar matahari, selain dapat pula dibuat secara artifisial seperti pada penginderaan dengan gelombang radar (gelombang mikro). Selang panjang gelombang elektromaknit mulai dari sekitar 0.3 nm sampai orde meter yang meliputi gelombang ultra ungu sampai radio.
           Tidak semua gelombang elektromaknit dapat dipakai dalam sistim perekaman data karena sebagian
Gambar 2 Proses yang berlangsung di Atmosfer
selama gelombang menjalar ke bumi
dari selang panjang gelombang tersebut tidak dapat diteruskan (ditrasmit) ke permukaan bumi. Perambatan gelombang ke permukaan bumi dipengaruhi oleh proses yang terlihat pada gambar 2. Penghalang yang membendung jalannya gelombang tersebut di antaranya adalah massa gas yang terdapat di atmosfir seperti O2, H2O, CO2. Oleh karena itu ada celah-celah dimana transmisi
gelombang berjalan penuh. Celah tersebut dikenal sebagai jendela atmosfir (atmospheric window).


5. Sistem Penginderaan Jauh
            Sistim penginderaan jauh mencakup beberapa komponen utama yaitu: (1). Sumber energi; (2). Sensor sebagai alat perekam data; (3). Stasiun bumi sebagai pengendali dan pnyimpan data; (4). Fasilitas pemrosesan data; (5). Pengguna data. Secara diagramatik diperlihatkan pada gambar 3. Sumber energi yang umum dipergunakan dalam sistim penginderaan jauh yang operasional saat ini adalah dari matahari yang dikenal sebagai “passive sensing” sebaliknya sistim “active sensing” dipakai dalam sistim “imaging radar”.               
Gambar 3 Diagram Sistem Penginderaan Jauh
            Sensor yang dapat digunakan untuk perekam data dapat berupa multispectral scanner, vidicon atau multispectral camera. Rekaman data pada umumnya disimpan sementara di dalam alat perekam yang ditempatkan di satelit kemudian dikirimkan secara telemetri ke stasiun penerima bumi sebagai data mentah (raw data). Di stasiun bumi data mengalami pemrosesan awal (pre-processing) seperti proses kalibrasi radiometri, koreksi geometri sebelum dikemas dalam bentuk format baku yang siap untuk dipakai pengguna (users). Pengguna data pada umumnya adalah masyarakat umum dengan tidak ada pengecualian apakah militer, sipil, instansi pemerintah atau swasta. Pemesanan dapat dilakukan langsung kepada stasiun penerima (user services) atau melalui agen/distributor lain..